An alternative formulation for a delayed logistic equation.
نویسندگان
چکیده
We derive an alternative expression for a delayed logistic equation, assuming that the rate of change of the population depends on three components: growth, death, and intraspecific competition, with the delay in the growth component. In our formulation, we incorporate the delay in the growth term in a manner consistent with the rate of instantaneous decline in the population given by the model. We provide a complete global analysis, showing that, unlike the dynamics of the classical logistic delay differential equation (DDE) model, no sustained oscillations are possible. Just as for the classical logistic ordinary differential equation (ODE) growth model, all solutions approach a globally asymptotically stable equilibrium. However, unlike both the logistic ODE and DDE growth models, the value of this equilibrium depends on all of the parameters, including the delay, and there is a threshold that determines whether the population survives or dies out. In particular, if the delay is too long, the population dies out. When the population survives, i.e., the attracting equilibrium has a positive value, we explore how this value depends on the parameters. When this value is positive, solutions of our DDE model seem to be well approximated by solutions of the logistic ODE growth model with this carrying capacity and an appropriate choice for the intrinsic growth rate that is independent of the initial conditions.
منابع مشابه
An Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients
Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...
متن کاملExtensions to Study Electrochemical Interfaces - A Contribution to the Theory of Ions
In the present study an alternative model allows the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly. From the Electro-Quasistatic approach (EQS) done in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles in arbitrary solutions acting as electrolytes. Thi...
متن کاملOn Delayed Logistic Equation Driven by Fractional Brownian Motion
In this paper we use the fractional stochastic integral given by Carmona et al. [1] to study a delayed logistic equation driven by fractional Brownian motion which is a generalization of the classical delayed logistic equation . We introduce an approximate method to find the explicit expression for the solution. Our proposed method can also be applied to the other models and to illustrate this,...
متن کاملRefueling problem of alternative fuel vehicles under intuitionistic fuzzy refueling waiting times: a fuzzy approach
Using alternative fuel vehicles is one of the ways to reduce the consumption of fossil fuels which have many negative environmental effects. An alternative fuel vehicle needs special planning for its refueling operations because of some reasons, e.g. limited number of refueling stations, uncertain refueling queue times in the stations, variable alternative fuel prices among the stations, etc. I...
متن کاملFUZZY LOGISTIC DIFFERENCE EQUATION
In this study, we consider two different inequivalent formulations of the logistic difference equation $x_{n+1}= beta x_n(1- x_n), n=0,1,..., $ where $x_n$ is a sequence of fuzzy numbers and $beta$ is a positive fuzzy number. The major contribution of this paper is to study the existence, uniqueness and global behavior of the solutions for two corresponding equations, using the concept of Huku...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 241 1 شماره
صفحات -
تاریخ انتشار 2006